VOL-2* ISSUE-10* January- 2018 Remarking An Analisation

Screening of Allelopathic Potential of Exotic Terrestrial Plant Species Using *Ceratophyllum Muricatum Bioassay*

The allelopathic effect of aqueous shoot extract of *Parthenium* hysterophorus and prosopis chilensis, leaf extract of *Eucalyptus* camaldulensis were studied on the growth of the Submerged macrophytes *Ceratophyllum muricatum* in which all the extracts put along with tap water and a mixture of clay and garden soil in 1:2 ratio, were applied and as a result of this, *Eucalyptus* extract promoted *Ceratophyllum muricatum* growth throughout the study period. *Prosopis* has inhibitory effect on *Ceratophyllum muricatum* growth in the beginning. *Parthenium* extract was however inhibitory to *Ceratophyllum muricatum* growth throughout the study period.

Keywords: Eucalyptus, Prosopis, Parthenium, Ceratophyllum, Allelopathy. Introduction

'Allelopathy' a term coined by an Austrian Scientist Molish (1937) involves chemical warfare between two plants species.

Review of Literature

Several studies of allelopathy in terrestrial ecosystem have shown that the plant litter intact or its leachates and extracts exert allelochemicals influence on other species (Rice, 1974; Silverstein and Simeone, 1983, Ahmed and Hoque 2008, Netsere and Mendsil 2011, Hozayan et.al. 2015)

Allelopathy may also provide a strategy for vegetation management in the aquatic ecosystem (Sczepenska1971). Unlike terrestrial plants allelochemical studies among aquatic plants are comparatively fenw (Whittaker, 1870; Whittaker & Feehey, 1971; Rice, 1984; Gopal and Goel, 1993).

Several studies have also demonstrated allelopathic potential of leaf leachates of several terrestrial plant species to no of aquatic plant species important among them are *Lantana camara (Saxena2000)*, Eucalyptus spp. *Prosopis juliflora, Parthenaniun* and *Casuarina*. Leaf Leachates of *Eucalyptius* species have also received considerable attention for their allelopathic properties and were found to inhibit growth of number of aquatic plant including duckweeds (Kohli et at 1987; May and Ash 1990; Singh and Kohli (1992).

Several studies showed that terrestrial plant species had both positive as well negative interactions with aquatic macrophytes. These finding are important as large amount of allochthonous organic matter (in the form of plant litter) of terrestrial origin enter into water bodies which may have significant effect on the aquatic vegetation (Singh Kohli 1992, Chaturvedi, 1996). In the present investigation, Allelopathic Potential of *Prosopis chilensis, Eucalyptus camaldulensis, Parthenium hysterophorus* terrestrial plant examined on *Ceratophyllum muricatum* bioassay.

The ecological benefits of allelopathic behavior are evident as they provide the plants with great competitive advantages with a limited investment in toxic chemicals that are harmless to the plant itself. **Aim of the Study**

The main purpose of research on allelopathic effect of terrestrial allochthonous matter on aquatic macrophytes is to evaluate its effects on aquatic macrophytes in water management.

Materials and Methods

Ceratophyllum muricatum growing in mono-specific stand in the concrete tanks of the botanical garden was the source of the plant material in this study.

Allelopathic potential of *Prosopis chilensis, Eucalyptus camaldulensis Parthenium hysterophorous* were determined in forty, 7.

Anju Mittal Assistant Professor, Deptt.of Botany, Govt. Girls College, Chomu, Rajasthan

K. P Sharma Professor, Deptt.of Botany, University of Rajasthan, Jaipur, Rajasthan

E: ISSN NO.: 2455-0817

L sized earthen pots, each containing about 1 Kg of soil, a mixture of clay and garden soil in 1:2 ratio

Shoots of both Parthenium and Prosopis while only the leaves of Eucalyptus were collected from the plants growing in the University campus30 g (fresh weight) of plant material of either species was filled in separately in a cotton bag. One bag was submerged in 3L tap water filled in a 7L sized earthen pot to make 1% concentration of the leachates. The bag was retained at the pot bottom by a stone. The control pots were having only the tap water. Only 10 pots were used for a given plant species. 10 pots without any plant material served as control.

Ceratophyllum muricaturn growing in concrete tanks was washed in the tap water to free debris. The excess water was soaked in the blotting paper. 4 g (f.wt) of C.muricatum plants was added in each earthen pots. All pots were placed in the botanical garden where sunlight stayed for 4 hours only. Two harvests were made after 15 and 30 days of plant growth. At each harvest, plants were dried to a constant weight separately in a hot air oven at 80°C.

Results

Ceratophyllum Growth In Eucalyptus Leaf Extract

Leaf extract was reddish brown in colour and aroma of Eucalyptus leaf. Growth of had Ceratophyllum was better in the leaf extract compared with the control plants. Percentage increase in dry weight of plants growing in extract was about 50% higher than control plants in the first harvest (see table and Fig). After first harvest Ceratophyllum growth in the extract was again higher than control plant. Percentage increase in dry weight in control plant in second harvest was about 40% when compared with first harvest. Increase in dry weight of plant growing in the extract was however higher, about 50% in the secondharvest in comparison to first harvest, indicating better growth of Ceratophyllumin the extract.

The comparison of *Ceratophyllum* growth in extract with control plant during second harvest revealed about 60% increase in dry weight of plant in the extracts, thus positive effect of Eucalyptus

VOL-2* ISSUE-10* January- 2018 Remarking An Analisation

extract continued after first harvest and was rather more in comparison to the first harvest.

Ceratophyllum Growth in Prosopis Chilens1s Extract

The leafy shoot extract was dark brown colored with offensive smell. Ceratophyllum growth was adversely affected in leachates in the beginning, butwas better than control plant after first harvest. Dry weight of Ceratophyllum in the extract was about 10% less than control plants during 1st harvest. The difference in the dry weight of plants growing in control and extract was insignificant at 5% probability after first harvest. Ceratophyllum growth occurred rapidly in the extract. Percentage increase in dry weight over 1st harvest was almost 150% at the time of 2^{nd} harvest. The increase in dry weight in control plants during same period was about just 40%, suggesting marked stimulatory effect of extract after 10 days (see table and figure).

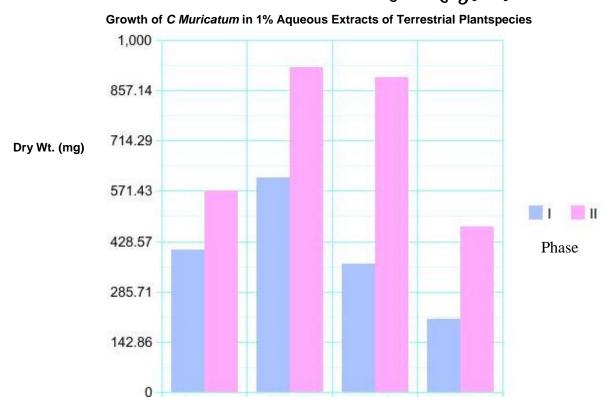
Dry weight of Ceratophyllum during second harvest was about 55% higher than that of control plants. Thus unlike Eucalyptus extract Prosopis extract was inhibitory in the beginning, but was promontory afterwards.

Ceratophyllum Growth in Parthenium Extracts

Parthenium extract was dark brown with offensive odour similar to Prosopis extract. Unlike Eucalyptus and Prosopis extract, growth in Partherium extract was adversely affected in comparison to control, plant during both harvests. Adverse effect on growth was more severe during 1s harvest. As a result dry weight of Ceratophyllumin the extract was about 50% of the dry weight of control plants. The severity of the extract decreased after 1st harvest. As a result dry weight of Ceratophyllum increased more than two folds of the first harvest at second harvest. Percentage increase in control sets during the same period was however, only 40%. This indicates that Parthenium extract was inhibitory to Ceratophyllum growth in the beginning and had a significant effect after 10 days. Therefore, dry weight of Ceratophyllum in extract during 2ndharvest was only 15% less than control plant (see table and figure).

Table: Mean Fry Weights (mg) of C. Muricatum Plants in 1% Aqueous Extracts of Different Plant Species		
Plant Species	Ist Harvest (10 days)	II harvest (20 days)
Control	400 <u>+</u> 75.6	571.5 <u>+</u> 142.5
	(<u>+</u> 37.8)	(<u>+</u> 71)
Eucalyptus- camaldulensis	608.9 <u>+</u> 126.5*	922.3 <u>+</u> 43**
	(<u>+</u> 63)	(<u>+</u> 21)
Prosopis- chilensis	366 <u>+</u> 98 NS	896.4 <u>+</u> 111*
	(<u>+</u> 49)	(<u>+</u> 55)
Parthenium- hysterophorus	207 <u>+</u> 94*	471 <u>+</u> 88 NS
	(+ 47)	(+ 44)

Data in Parenthesis are standard error.


Non-significant.

<u>+</u> SD Non-significa ** Significant at 1% probability.

* Significant at 5% probability.

E: ISSN NO.: 2455-0817

Discussion

Harvest

C. muricatum were used in bioassay of Eucalyptus, Prosopis and Parthenium extract. Dry weight of with C. muricatumin Eucalyptus extract were higher (52-60%) than control plants during both harvest (table) though it adversely affected Lemna growth (Singh and Kohil 1992 and Chaturvedi and Sharma 1997). Ceratophyllun dry weight were little lower (10%) during first harvest in Prosopis extract but higher that control plants (57%) during 2nd harvest. Lemna growth was however, inhibited during the study period in its extract (Chaturvedi and Sharma 1997) Ceratophyllum dry weight in the Parthenium extract were less during both first 93%) as well as in second harvest (21% Similar to Eichhornia and Pistia (Pandey et al, 1993, Pandey 1994). It is thus evident that allelopathic effect varied with the test species perhaps on account of difference in their tolerance to allelochemicals.

Conclusion

Thus Eucalypatus extract had promoter effect on Ceratophyllum growth from the beginning. Prosopis extract having inhibitory effect on Ceratophyllum growth in the beginning however Parthenium extract was promoted afterwards. inhibitory to Ceratophyllum growth throughout study. It was observed that allelopathic effect was found to be declining as time lapsed. Allelopathic effect of Parthenium hysterophorus on terrestrial species has been observed many times (Wakjira et.al. 2009, Shehzad et.al 2016) but its effects have not been evaluated for aquatic species. The study indicates inhibitory effect of the allelochemicals was short lived perhaps on account of their decay.

Acknowledgements

Authors are grateful to the Head, Department of Botany, Rajasthan University for providing the necessary facilities.

References

- Ahmed, R., Hoque, R. A.T.H., 2008 Allelopathic effect of leaf litter of Eucalyptus camaldulensis on some forest and agriculture crop. Journal of Forestry Research March 2000 Volume 19 issue 1 pp - 19-24
- 2. Chaturvedi.N. 1996 Competition and Allelopathic Interactions among AquaticMacrophytes Ph.d. Thesis, University of Rajasthan, Jaipur.
- Chaturvedi, N. and K.P.Sharma 1997kScreening З. of allelopathic potential of some terrestrial and wetland plant species. Journal of Environ & Pollution 4 (3) P. P.229.236.
- Gopal, Band Usha Goel. 1993. Competition 4. and allelopathy in aquatic plant communities. The Botanical Review.59 (3) :155-210.
- Kohli, R.K., K.Kaur, P.Chaudhry, A.Kumariand 5. D.B.Saxena.1987. Negative aspects of Eucalyptus farming. 225-233. pp. In: P.K.Khosla and D.K.Khurana (eds.) Agroforestry for Rural Needs. Indian Society of Tree Scientists, Solan, India.
- Hozayan M., E.I Shahway T.A., Abd, Elmohem 6. A.A., El. Saddy A.A. and Darvish M.A 2015. Allelopathic of Casuarina equisetefolia on wheat, associated weed and nutrient content in the soil. Journal of Agricultural research. African Academic Journal of org. vol.10(14) p.1675-1683.

P: ISSN NO.: 2394-0344

E: ISSN NO.: 2455-0817

- May, F.E. Ash. 1990. An assessment of the allelopathic potential of Eucalyptus. Austral. J. Bot. 38: 245-254.
- 8. Molisch, H. 1937. Der Einflusseinerpflanze auf die andere-Allelopathie G. Fischer Verlag, Jena.
- Netsere, A., Mendesil, E., (2011) Allelopathic effect of Parthenium hysterophorus L. aqueous extract on Soybean Glycine max L.) and haricot bean (Phaseolus vulgarisL.) Seed germination shoot and root growth and dry matter Production. Journal of applied Botany and food quality 84, 219-222.
- Pandey, D.K. 1994. Inhibition of PistiaStrationtesL by Parthenium (parthenium hystophorus) National Symposium on Agricultural Environment Abstract pp.94.
- 11. Rice, E.L. 1984. Allelopathy. 2nd Edition. Academic Press, N.Y.
- Saxena, M.K. 2000Aqucous leachate of Lantana camarakills water hyacinth, J. Chem Eco. 26 : 2435-2447.
- 13. Singh,D. and R.K.Kohli1992. Reasons of poor under floor vegetation of Eucalyptus. pp. 114-117.In:P.Tauro and S.S.Narwal (eds.) Proc.

VOL-2* ISSUE-10* January- 2018 Remarking An Analisation

First Nat.Symp. Allelopathy in Agroecosystems. Indian Society of Allelopathy, Haryana Agri. Univ.Hissar, India.

- Shehzad M., Hussain S., Mubeen K., Shoaib M. 2016. Alleopathic effect of Parthenium hysterophorous mulch growth and yield of soybean(glycine max) Planta Daninha, SciELO Brasil.
- 15. Szczepanska, W. 1971. Allelopathy among the aquatic plants. PolskieArchiwumHydrobiologii 18.: 17-30.
- Whittaker, R.H 1970. The biochemical ecology of higher plants In: Chemical Ecology. E Sondheimer and J.B.Simeone (eds.) Academic Press, New York, pp 43-70.
- 17. Whittaker, R.H. and P.P.Feeny 1971. Allelochemics: Chemical interactions between species Science 171:757-770.
- Wakjira, M., Berecha G., Tulu S. 2009. Allelopathic effect of invasive alien weed Parthenium hysterophorous L. compost on lettuce germination and growth. African Journal of Agriculture, Academic Journal org.Vol 4(11) pp 1325-1330